Downregulation of Nrf2 promotes radiation-induced apoptosis through Nrf2 mediated Notch signaling in non-small cell lung cancer cells.
نویسندگان
چکیده
The nuclear factor erythroid-2-related factor 2 (Nrf2) is a crucial regulator of the cellular antioxidant system. Nrf2 is often constitutively activated in non-small cell lung cancer (NSCLC) cell lines, which promotes cytoprotection against oxidative stress and xenobiotics. Notch1 signaling is critically implicated in cell fate determination. It has been reported that Nf2 strongly regulates Notch1 activity. However, the role of Nrf2 mediated Notch1 signaling in response to ionizing radiation (IR) remains elusive. We report that knockdown of Nrf2 promotes radiation-induced apoptosis through Nrf2 mediated Notch1 signaling in NSCLC cells. IR activated Nrf2 in a dose-dependent manner and the expression of Nrf2 was significantly elevated at 4 h after exposure. RNAi-mediated reduction of Nrf2 significantly increased endogenous ROS levels, and decreased the expression of glutamate cysteine ligase catalytic subunit (GCLC), heme oxygenase-1 (HO-1) and NAD (P) H quinine oxidoreductase-1 (NQO1) in irradiated cells. Furthermore, decrease in Nrf2 expression significantly dampened Notch1 expression following ionizing radiation exposure, and potentiated IR-induced cellular apoptosis. These results demonstrated that Nrf2 could be activated by ionizing radiation, knockdown of Nrf2 could promote radiation induced apoptosis and Nrf2-mediated Notch signaling is an important determinant in radioresistance of lung cancer cells.
منابع مشابه
Suppression of radiation-induced migration of non-small cell lung cancer through inhibition of Nrf2-Notch Axis
Nuclear factor E2 related factor 2 (Nrf2) is a transcription factor that is associated with tumor growth and resistance to radiation. The canonical Notch signaling pathway is also crucial for maintaining non-small cell lung cancer (NSCLC). Aberrant Nrf2 and Notch signaling has repeatedly been showed to facilitate metastasis of NSCLC. Here, we show that radiation induce Nrf2 and Notch1 expressio...
متن کامل15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner
Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملLAPTM4B is associated with poor prognosis in NSCLC and promotes the NRF2-mediated stress response pathway in lung cancer cells
We recently demonstrated that lysosomal protein transmembrane 4 beta (LAPTM4B) is elevated in non-small cell lung cancers (NSCLCs) and in the surrounding premalignant airway field of cancerization. In the present study, we sought to begin to understand the relevance of LAPTM4B expression and signaling to NSCLC pathogenesis. In situ hybridization analysis of LAPTM4B transcript in tissue microarr...
متن کاملATM induces radioresistance of non-small cell lung cancer A549 cells by downregulation of MDMX
Background: Tumor radioresistance leads to a reduction in the efficiency of radiation therapy. It is very important to explore the cellular mechanisms leading to radioresistance and to find potential therapeutic targets, which might improve the efficacy of radiation therapy. This study was to investigate the role of ataxia-telangiectasia mutated (ATM) and murine double minute X (MDMX) in radior...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of oncology
دوره 48 2 شماره
صفحات -
تاریخ انتشار 2016